Properties

Label 2.2e2_5_29.8t11.1c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 5 \cdot 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$580= 2^{2} \cdot 5 \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{6} + 6 x^{5} - 2 x^{4} + 8 x^{3} + 6 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e2_5_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 47 + 65\cdot 149 + 90\cdot 149^{2} + 86\cdot 149^{3} + 31\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 50\cdot 149 + 123\cdot 149^{2} + 134\cdot 149^{3} + 63\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 90 + 112\cdot 149 + 116\cdot 149^{2} + 118\cdot 149^{3} + 105\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 96 + 43\cdot 149 + 41\cdot 149^{2} + 9\cdot 149^{3} + 112\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 98 + 51\cdot 149 + 22\cdot 149^{2} + 66\cdot 149^{3} + 24\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 106 + 130\cdot 149 + 61\cdot 149^{2} + 10\cdot 149^{3} + 29\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 118 + 26\cdot 149 + 43\cdot 149^{2} + 52\cdot 149^{3} + 124\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 144 + 114\cdot 149 + 96\cdot 149^{2} + 117\cdot 149^{3} + 104\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,6,3)(2,7,5,4)$
$(1,5,6,2)(3,7,8,4)$
$(1,6)(2,5)(3,8)(4,7)$
$(3,8)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,4)(2,8)(3,5)(6,7)$$0$
$2$$2$$(3,8)(4,7)$$0$
$2$$2$$(1,8)(2,7)(3,6)(4,5)$$0$
$1$$4$$(1,5,6,2)(3,7,8,4)$$2 \zeta_{4}$
$1$$4$$(1,2,6,5)(3,4,8,7)$$-2 \zeta_{4}$
$2$$4$$(1,8,6,3)(2,7,5,4)$$0$
$2$$4$$(1,5,6,2)(3,4,8,7)$$0$
$2$$4$$(1,4,6,7)(2,8,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.