Properties

Label 2.2e2_5_17e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 5 \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$5780= 2^{2} \cdot 5 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 8 x^{4} + 21 x^{3} - 16 x^{2} + 5 x - 145 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e2_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 13\cdot 19 + 8\cdot 19^{2} + 14\cdot 19^{3} + 16\cdot 19^{4} + 5\cdot 19^{5} + 4\cdot 19^{6} + 2\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 13 a + \left(7 a + 1\right)\cdot 19 + \left(2 a + 12\right)\cdot 19^{2} + \left(9 a + 1\right)\cdot 19^{3} + \left(7 a + 13\right)\cdot 19^{4} + \left(9 a + 8\right)\cdot 19^{5} + \left(14 a + 2\right)\cdot 19^{6} + \left(4 a + 12\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 13 + \left(11 a + 14\right)\cdot 19 + \left(16 a + 6\right)\cdot 19^{2} + \left(9 a + 8\right)\cdot 19^{3} + \left(11 a + 11\right)\cdot 19^{4} + \left(9 a + 10\right)\cdot 19^{5} + \left(4 a + 7\right)\cdot 19^{6} + \left(14 a + 2\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 7 + \left(7 a + 4\right)\cdot 19 + \left(2 a + 12\right)\cdot 19^{2} + \left(9 a + 10\right)\cdot 19^{3} + \left(7 a + 7\right)\cdot 19^{4} + \left(9 a + 8\right)\cdot 19^{5} + \left(14 a + 11\right)\cdot 19^{6} + \left(4 a + 16\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 12 + 5\cdot 19 + 10\cdot 19^{2} + 4\cdot 19^{3} + 2\cdot 19^{4} + 13\cdot 19^{5} + 14\cdot 19^{6} + 16\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 1 + \left(11 a + 18\right)\cdot 19 + \left(16 a + 6\right)\cdot 19^{2} + \left(9 a + 17\right)\cdot 19^{3} + \left(11 a + 5\right)\cdot 19^{4} + \left(9 a + 10\right)\cdot 19^{5} + \left(4 a + 16\right)\cdot 19^{6} + \left(14 a + 6\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,4)$$-2$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$3$$2$$(1,4)(3,5)$$0$
$2$$3$$(1,6,4)(2,3,5)$$-1$
$2$$6$$(1,3,6,5,4,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.