Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 13\cdot 19 + 8\cdot 19^{2} + 14\cdot 19^{3} + 16\cdot 19^{4} + 5\cdot 19^{5} + 4\cdot 19^{6} + 2\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 a + \left(7 a + 1\right)\cdot 19 + \left(2 a + 12\right)\cdot 19^{2} + \left(9 a + 1\right)\cdot 19^{3} + \left(7 a + 13\right)\cdot 19^{4} + \left(9 a + 8\right)\cdot 19^{5} + \left(14 a + 2\right)\cdot 19^{6} + \left(4 a + 12\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 6 a + 13 + \left(11 a + 14\right)\cdot 19 + \left(16 a + 6\right)\cdot 19^{2} + \left(9 a + 8\right)\cdot 19^{3} + \left(11 a + 11\right)\cdot 19^{4} + \left(9 a + 10\right)\cdot 19^{5} + \left(4 a + 7\right)\cdot 19^{6} + \left(14 a + 2\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 13 a + 7 + \left(7 a + 4\right)\cdot 19 + \left(2 a + 12\right)\cdot 19^{2} + \left(9 a + 10\right)\cdot 19^{3} + \left(7 a + 7\right)\cdot 19^{4} + \left(9 a + 8\right)\cdot 19^{5} + \left(14 a + 11\right)\cdot 19^{6} + \left(4 a + 16\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 + 5\cdot 19 + 10\cdot 19^{2} + 4\cdot 19^{3} + 2\cdot 19^{4} + 13\cdot 19^{5} + 14\cdot 19^{6} + 16\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 6 a + 1 + \left(11 a + 18\right)\cdot 19 + \left(16 a + 6\right)\cdot 19^{2} + \left(9 a + 17\right)\cdot 19^{3} + \left(11 a + 5\right)\cdot 19^{4} + \left(9 a + 10\right)\cdot 19^{5} + \left(4 a + 16\right)\cdot 19^{6} + \left(14 a + 6\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(2,3)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,5)(2,6)(3,4)$ |
$-2$ |
| $3$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,4)(3,5)$ |
$0$ |
| $2$ |
$3$ |
$(1,6,4)(2,3,5)$ |
$-1$ |
| $2$ |
$6$ |
$(1,3,6,5,4,2)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.