Properties

Label 2.2e2_5_13.8t17.2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{2} \cdot 5 \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$260= 2^{2} \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 11 x^{4} - 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 10 + 34\cdot 73 + 23\cdot 73^{2} + 42\cdot 73^{3} + 28\cdot 73^{4} + 45\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 22 + 49\cdot 73 + 22\cdot 73^{2} + 38\cdot 73^{3} + 73^{4} + 27\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 64\cdot 73 + 25\cdot 73^{2} + 73^{3} + 70\cdot 73^{4} + 56\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 28 + 7\cdot 73 + 65\cdot 73^{2} + 45\cdot 73^{3} + 48\cdot 73^{4} + 58\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 29 + 36\cdot 73 + 55\cdot 73^{2} + 47\cdot 73^{3} + 57\cdot 73^{4} + 19\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 54 + 68\cdot 73 + 3\cdot 73^{2} + 23\cdot 73^{3} + 21\cdot 73^{4} + 22\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 60 + 65\cdot 73 + 5\cdot 73^{2} + 36\cdot 73^{3} + 8\cdot 73^{4} + 35\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 68 + 38\cdot 73 + 16\cdot 73^{2} + 57\cdot 73^{3} + 55\cdot 73^{4} + 26\cdot 73^{5} +O\left(73^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(4,7)$
$(1,6)(2,3)(4,8)(5,7)$
$(1,7,2,4)(3,5,6,8)$
$(1,7,2,4)$
$(1,2)(3,6)(4,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $-2$ $-2$
$2$ $2$ $(1,2)(4,7)$ $0$ $0$
$4$ $2$ $(1,6)(2,3)(4,8)(5,7)$ $0$ $0$
$1$ $4$ $(1,7,2,4)(3,8,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,4,2,7)(3,5,6,8)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,7,2,4)(3,5,6,8)$ $0$ $0$
$2$ $4$ $(1,7,2,4)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,4,2,7)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,2)(3,5,6,8)(4,7)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,2)(3,8,6,5)(4,7)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$4$ $4$ $(1,6,2,3)(4,8,7,5)$ $0$ $0$
$4$ $8$ $(1,6,7,5,2,3,4,8)$ $0$ $0$
$4$ $8$ $(1,5,4,6,2,8,7,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.