Properties

Label 2.2e2_5_13.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 5 \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$260= 2^{2} \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 2 x^{5} + 29 x^{4} - 62 x^{3} + 18 x^{2} - 84 x + 196 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_5_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 84\cdot 101 + 74\cdot 101^{2} + 58\cdot 101^{3} + 49\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 23\cdot 101 + 85\cdot 101^{2} + 45\cdot 101^{3} + 86\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 + 65\cdot 101 + 91\cdot 101^{2} + 44\cdot 101^{3} + 84\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 71 + 40\cdot 101 + 38\cdot 101^{2} + 21\cdot 101^{3} + 27\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 82 + 11\cdot 101 + 98\cdot 101^{2} + 76\cdot 101^{3} + 40\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 95 + 49\cdot 101 + 92\cdot 101^{2} + 44\cdot 101^{3} + 30\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 98 + 45\cdot 101 + 80\cdot 101^{2} + 90\cdot 101^{3} + 59\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 100 + 82\cdot 101 + 44\cdot 101^{2} + 20\cdot 101^{3} + 25\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,4)(2,7,8,6)$
$(1,2)(3,6)(4,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,8)(3,4)(6,7)$$-2$
$2$$2$$(1,2)(3,6)(4,7)(5,8)$$0$
$2$$2$$(1,7)(2,3)(4,8)(5,6)$$0$
$2$$4$$(1,3,5,4)(2,7,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.