Properties

Label 2.2e2_5_13.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 5 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$260= 2^{2} \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} + 6 x^{5} + 33 x^{4} - 86 x^{3} + 98 x^{2} - 56 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 69\cdot 73 + 57\cdot 73^{2} + 60\cdot 73^{3} + 58\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 72\cdot 73 + 70\cdot 73^{2} + 37\cdot 73^{3} + 24\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 3\cdot 73 + 72\cdot 73^{2} + 2\cdot 73^{3} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 11\cdot 73 + 46\cdot 73^{2} + 51\cdot 73^{3} + 62\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 14\cdot 73 + 59\cdot 73^{2} + 28\cdot 73^{3} + 28\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 47 + 45\cdot 73 + 41\cdot 73^{2} + 4\cdot 73^{3} + 47\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 54 + 16\cdot 73 + 60\cdot 73^{2} + 51\cdot 73^{3} + 11\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 66 + 58\cdot 73 + 29\cdot 73^{2} + 53\cdot 73^{3} + 58\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,5)(6,8)$
$(1,3,5,8)(2,6,4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,4)(3,8)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,6)(2,3)(4,8)(5,7)$ $0$
$2$ $4$ $(1,3,5,8)(2,6,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.