Properties

Label 2.2e2_43e2.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 43^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$7396= 2^{2} \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} + 23 x^{3} + 24 x^{2} + 7 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 56 a + 111 + \left(40 a + 79\right)\cdot 113 + \left(84 a + 39\right)\cdot 113^{2} + \left(75 a + 107\right)\cdot 113^{3} + \left(13 a + 71\right)\cdot 113^{4} + \left(92 a + 71\right)\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 57 a + 105 + \left(72 a + 57\right)\cdot 113 + \left(28 a + 107\right)\cdot 113^{2} + \left(37 a + 27\right)\cdot 113^{3} + \left(99 a + 47\right)\cdot 113^{4} + \left(20 a + 33\right)\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 54 a + 102 + \left(109 a + 27\right)\cdot 113 + \left(89 a + 4\right)\cdot 113^{2} + \left(44 a + 71\right)\cdot 113^{3} + \left(63 a + 57\right)\cdot 113^{4} + \left(31 a + 35\right)\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 22 + \left(20 a + 62\right)\cdot 113 + \left(5 a + 37\right)\cdot 113^{2} + \left(39 a + 27\right)\cdot 113^{3} + \left(108 a + 24\right)\cdot 113^{4} + \left(14 a + 1\right)\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 59 a + 72 + \left(3 a + 44\right)\cdot 113 + \left(23 a + 70\right)\cdot 113^{2} + \left(68 a + 66\right)\cdot 113^{3} + \left(49 a + 95\right)\cdot 113^{4} + \left(81 a + 11\right)\cdot 113^{5} +O\left(113^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 102 a + 41 + \left(92 a + 66\right)\cdot 113 + \left(107 a + 79\right)\cdot 113^{2} + \left(73 a + 38\right)\cdot 113^{3} + \left(4 a + 42\right)\cdot 113^{4} + \left(98 a + 72\right)\cdot 113^{5} +O\left(113^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4,3)$
$(1,4,6,3,5,2)$
$(1,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$ $0$
$1$ $3$ $(1,6,5)(2,4,3)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,5,6)(2,3,4)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(2,4,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(2,3,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,6,5)(2,3,4)$ $-1$ $-1$
$3$ $6$ $(1,4,6,3,5,2)$ $0$ $0$
$3$ $6$ $(1,2,5,3,6,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.