Properties

Label 2.2e2_41e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6724= 2^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 29 x^{4} - 46 x^{3} + 2 x^{2} + 20 x + 100 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 4\cdot 73 + 30\cdot 73^{2} + 20\cdot 73^{3} + 2\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 18\cdot 73 + 37\cdot 73^{2} + 38\cdot 73^{3} + 14\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 44\cdot 73 + 64\cdot 73^{2} + 17\cdot 73^{3} + 44\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 58\cdot 73 + 71\cdot 73^{2} + 35\cdot 73^{3} + 56\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 52 + 14\cdot 73 + 73^{2} + 37\cdot 73^{3} + 16\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 + 28\cdot 73 + 8\cdot 73^{2} + 55\cdot 73^{3} + 28\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 63 + 54\cdot 73 + 35\cdot 73^{2} + 34\cdot 73^{3} + 58\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 68 + 68\cdot 73 + 42\cdot 73^{2} + 52\cdot 73^{3} + 70\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,3)(5,6,8,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,4,3)(5,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.