Properties

Label 2.2e2_41.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$164= 2^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{8} + 13 x^{6} + 40 x^{4} + 52 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 23\cdot 61 + 5\cdot 61^{2} + 42\cdot 61^{3} + 33\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 15\cdot 61 + 10\cdot 61^{2} + 32\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 5\cdot 61 + 61^{2} + 8\cdot 61^{3} + 52\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 24\cdot 61 + 43\cdot 61^{2} + 45\cdot 61^{3} + 59\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 + 36\cdot 61 + 17\cdot 61^{2} + 15\cdot 61^{3} + 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 + 55\cdot 61 + 59\cdot 61^{2} + 52\cdot 61^{3} + 8\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 59 + 45\cdot 61 + 50\cdot 61^{2} + 28\cdot 61^{3} + 24\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 60 + 37\cdot 61 + 55\cdot 61^{2} + 18\cdot 61^{3} + 27\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,7,6)(2,3,8,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.