Properties

Label 2.2e2_3e4_7.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3^{4} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$2268= 2^{2} \cdot 3^{4} \cdot 7 $
Artin number field: Splitting field of $f= x^{6} - 12 x^{4} - 2 x^{3} + 36 x^{2} + 12 x - 20 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Even
Determinant: 1.3e2_7.6t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 11 + 18 a\cdot 19 + \left(8 a + 12\right)\cdot 19^{2} + \left(13 a + 11\right)\cdot 19^{3} + \left(17 a + 15\right)\cdot 19^{4} + \left(7 a + 12\right)\cdot 19^{5} + \left(4 a + 5\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 11 + \left(18 a + 15\right)\cdot 19 + \left(8 a + 14\right)\cdot 19^{2} + 12\cdot 19^{3} + \left(2 a + 13\right)\cdot 19^{4} + \left(5 a + 15\right)\cdot 19^{5} + \left(4 a + 1\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 15 + 10\cdot 19 + \left(10 a + 5\right)\cdot 19^{2} + \left(18 a + 4\right)\cdot 19^{3} + \left(16 a + 15\right)\cdot 19^{4} + \left(13 a + 18\right)\cdot 19^{5} + 14 a\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 18 + 11\cdot 19 + \left(10 a + 2\right)\cdot 19^{2} + \left(5 a + 16\right)\cdot 19^{3} + a\cdot 19^{4} + \left(11 a + 3\right)\cdot 19^{5} + \left(14 a + 2\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 16 + \left(a + 2\right)\cdot 19 + \left(a + 11\right)\cdot 19^{2} + \left(5 a + 13\right)\cdot 19^{3} + \left(18 a + 8\right)\cdot 19^{4} + \left(5 a + 9\right)\cdot 19^{5} + \left(10 a + 11\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 5 + \left(17 a + 15\right)\cdot 19 + \left(17 a + 10\right)\cdot 19^{2} + \left(13 a + 17\right)\cdot 19^{3} + 2\cdot 19^{4} + \left(13 a + 16\right)\cdot 19^{5} + \left(8 a + 15\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2)$
$(1,3,5,4,2,6)$
$(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,3)(5,6)$$0$
$1$$3$$(1,5,2)(3,4,6)$$-2 \zeta_{3} - 2$
$1$$3$$(1,2,5)(3,6,4)$$2 \zeta_{3}$
$2$$3$$(3,4,6)$$-\zeta_{3}$
$2$$3$$(3,6,4)$$\zeta_{3} + 1$
$2$$3$$(1,5,2)(3,6,4)$$-1$
$3$$6$$(1,3,5,4,2,6)$$0$
$3$$6$$(1,6,2,4,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.