Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 12 + \left(26 a + 6\right)\cdot 37 + \left(23 a + 22\right)\cdot 37^{2} + \left(32 a + 23\right)\cdot 37^{3} + \left(29 a + 13\right)\cdot 37^{4} + \left(35 a + 14\right)\cdot 37^{5} + \left(25 a + 23\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 a + 31 + \left(10 a + 23\right)\cdot 37 + \left(13 a + 16\right)\cdot 37^{2} + \left(4 a + 19\right)\cdot 37^{3} + \left(7 a + 26\right)\cdot 37^{4} + \left(a + 16\right)\cdot 37^{5} + \left(11 a + 17\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a + 28 + \left(32 a + 12\right)\cdot 37 + 35\cdot 37^{2} + 7\cdot 37^{3} + \left(17 a + 16\right)\cdot 37^{4} + \left(a + 18\right)\cdot 37^{5} + \left(29 a + 34\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 a + 34 + \left(15 a + 17\right)\cdot 37 + \left(12 a + 16\right)\cdot 37^{2} + \left(4 a + 5\right)\cdot 37^{3} + \left(27 a + 7\right)\cdot 37^{4} + \left(36 a + 4\right)\cdot 37^{5} + \left(18 a + 16\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 33 a + 7 + \left(4 a + 26\right)\cdot 37 + \left(36 a + 6\right)\cdot 37^{2} + \left(36 a + 7\right)\cdot 37^{3} + \left(19 a + 10\right)\cdot 37^{4} + \left(35 a + 7\right)\cdot 37^{5} + \left(7 a + 1\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 18 a + 36 + \left(21 a + 23\right)\cdot 37 + \left(24 a + 13\right)\cdot 37^{2} + \left(32 a + 10\right)\cdot 37^{3} + 9 a\cdot 37^{4} + 13\cdot 37^{5} + \left(18 a + 18\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,6,5)$ |
| $(1,4,3)$ |
| $(1,6,4,5,3,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $3$ | $2$ | $(1,5)(2,4)(3,6)$ | $0$ |
| $1$ | $3$ | $(1,4,3)(2,6,5)$ | $-2 \zeta_{3} - 2$ |
| $1$ | $3$ | $(1,3,4)(2,5,6)$ | $2 \zeta_{3}$ |
| $2$ | $3$ | $(1,4,3)$ | $-\zeta_{3}$ |
| $2$ | $3$ | $(1,3,4)$ | $\zeta_{3} + 1$ |
| $2$ | $3$ | $(1,3,4)(2,6,5)$ | $-1$ |
| $3$ | $6$ | $(1,6,4,5,3,2)$ | $0$ |
| $3$ | $6$ | $(1,2,3,5,4,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.