Properties

Label 2.2e2_3e4_17.6t5.3
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3^{4} \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$5508= 2^{2} \cdot 3^{4} \cdot 17 $
Artin number field: Splitting field of $f= x^{6} + 24 x^{4} - 4 x^{3} + 144 x^{2} - 48 x + 208 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 12 + \left(26 a + 6\right)\cdot 37 + \left(23 a + 22\right)\cdot 37^{2} + \left(32 a + 23\right)\cdot 37^{3} + \left(29 a + 13\right)\cdot 37^{4} + \left(35 a + 14\right)\cdot 37^{5} + \left(25 a + 23\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 31 + \left(10 a + 23\right)\cdot 37 + \left(13 a + 16\right)\cdot 37^{2} + \left(4 a + 19\right)\cdot 37^{3} + \left(7 a + 26\right)\cdot 37^{4} + \left(a + 16\right)\cdot 37^{5} + \left(11 a + 17\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 28 + \left(32 a + 12\right)\cdot 37 + 35\cdot 37^{2} + 7\cdot 37^{3} + \left(17 a + 16\right)\cdot 37^{4} + \left(a + 18\right)\cdot 37^{5} + \left(29 a + 34\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 34 + \left(15 a + 17\right)\cdot 37 + \left(12 a + 16\right)\cdot 37^{2} + \left(4 a + 5\right)\cdot 37^{3} + \left(27 a + 7\right)\cdot 37^{4} + \left(36 a + 4\right)\cdot 37^{5} + \left(18 a + 16\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 7 + \left(4 a + 26\right)\cdot 37 + \left(36 a + 6\right)\cdot 37^{2} + \left(36 a + 7\right)\cdot 37^{3} + \left(19 a + 10\right)\cdot 37^{4} + \left(35 a + 7\right)\cdot 37^{5} + \left(7 a + 1\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 36 + \left(21 a + 23\right)\cdot 37 + \left(24 a + 13\right)\cdot 37^{2} + \left(32 a + 10\right)\cdot 37^{3} + 9 a\cdot 37^{4} + 13\cdot 37^{5} + \left(18 a + 18\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6,5)$
$(1,4,3)$
$(1,6,4,5,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,5)(2,4)(3,6)$ $0$ $0$
$1$ $3$ $(1,4,3)(2,6,5)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,4)(2,5,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,4,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,3,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,3,4)(2,6,5)$ $-1$ $-1$
$3$ $6$ $(1,6,4,5,3,2)$ $0$ $0$
$3$ $6$ $(1,2,3,5,4,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.