Properties

Label 2.2e2_3e4_13.6t5.8c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3^{4} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$4212= 2^{2} \cdot 3^{4} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - 18 x^{4} - 22 x^{3} + 117 x^{2} + 390 x + 377 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.2e2_3e2_13.6t1.8c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 6 + \left(30 a + 12\right)\cdot 43 + \left(14 a + 7\right)\cdot 43^{2} + \left(34 a + 34\right)\cdot 43^{3} + \left(20 a + 26\right)\cdot 43^{4} + \left(2 a + 33\right)\cdot 43^{5} + \left(8 a + 37\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 15 + \left(32 a + 32\right)\cdot 43 + \left(16 a + 2\right)\cdot 43^{2} + \left(31 a + 21\right)\cdot 43^{3} + \left(28 a + 41\right)\cdot 43^{4} + 28\cdot 43^{5} + \left(8 a + 4\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 22 + \left(23 a + 41\right)\cdot 43 + \left(11 a + 32\right)\cdot 43^{2} + \left(20 a + 30\right)\cdot 43^{3} + \left(36 a + 17\right)\cdot 43^{4} + \left(39 a + 23\right)\cdot 43^{5} + 26 a\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 37 a + 28 + \left(19 a + 15\right)\cdot 43 + \left(31 a + 21\right)\cdot 43^{2} + \left(22 a + 39\right)\cdot 43^{3} + \left(6 a + 33\right)\cdot 43^{4} + \left(3 a + 26\right)\cdot 43^{5} + \left(16 a + 30\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 16 + \left(12 a + 32\right)\cdot 43 + \left(28 a + 34\right)\cdot 43^{2} + \left(8 a + 10\right)\cdot 43^{3} + \left(22 a + 13\right)\cdot 43^{4} + \left(40 a + 15\right)\cdot 43^{5} + 34 a\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 42 + \left(10 a + 37\right)\cdot 43 + \left(26 a + 29\right)\cdot 43^{2} + \left(11 a + 35\right)\cdot 43^{3} + \left(14 a + 38\right)\cdot 43^{4} + 42 a\cdot 43^{5} + \left(34 a + 12\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(4,5,6)$
$(1,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(2,6)(3,4)$$0$
$1$$3$$(1,2,3)(4,5,6)$$2 \zeta_{3}$
$1$$3$$(1,3,2)(4,6,5)$$-2 \zeta_{3} - 2$
$2$$3$$(1,3,2)$$-\zeta_{3}$
$2$$3$$(1,2,3)$$\zeta_{3} + 1$
$2$$3$$(1,3,2)(4,5,6)$$-1$
$3$$6$$(1,6,2,4,3,5)$$0$
$3$$6$$(1,5,3,4,2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.