Properties

Label 2.2e2_3e4_13.6t3.7
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{4} \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$4212= 2^{2} \cdot 3^{4} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 8 x^{3} + 90 x^{2} - 138 x + 97 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 17 + \left(31 a + 11\right)\cdot 37 + \left(19 a + 25\right)\cdot 37^{2} + \left(5 a + 34\right)\cdot 37^{3} + \left(2 a + 10\right)\cdot 37^{4} + \left(24 a + 6\right)\cdot 37^{5} + \left(2 a + 27\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ a + 7 + \left(34 a + 2\right)\cdot 37 + \left(14 a + 17\right)\cdot 37^{2} + \left(32 a + 34\right)\cdot 37^{3} + \left(23 a + 20\right)\cdot 37^{4} + \left(28 a + 4\right)\cdot 37^{5} + \left(24 a + 3\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 24 + 4\cdot 37 + 12\cdot 37^{2} + 2\cdot 37^{3} + 12\cdot 37^{4} + 4\cdot 37^{5} + 33\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 11 + \left(2 a + 26\right)\cdot 37 + \left(22 a + 5\right)\cdot 37^{2} + \left(4 a + 1\right)\cdot 37^{3} + \left(13 a + 10\right)\cdot 37^{4} + \left(8 a + 21\right)\cdot 37^{5} + \left(12 a + 36\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 33 + \left(5 a + 20\right)\cdot 37 + \left(17 a + 36\right)\cdot 37^{2} + \left(31 a + 36\right)\cdot 37^{3} + \left(34 a + 13\right)\cdot 37^{4} + \left(12 a + 26\right)\cdot 37^{5} + \left(34 a + 13\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 19 + 8\cdot 37 + 14\cdot 37^{2} + 37^{3} + 6\cdot 37^{4} + 11\cdot 37^{5} + 34\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5)(4,6)$
$(1,2)(3,6)(4,5)$
$(1,3)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-2$
$3$ $2$ $(1,3)(2,6)$ $0$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$
$2$ $3$ $(1,5,3)(2,4,6)$ $-1$
$2$ $6$ $(1,4,3,2,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.