Properties

Label 2.2e2_3e4.6t5.3c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3^{4}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$324= 2^{2} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 3 x^{7} - 6 x^{5} + 15 x^{4} - 21 x^{3} + 15 x^{2} - 6 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.2e2_3e2.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 9 a + 10 + \left(9 a^{2} + 11 a + 12\right)\cdot 13 + \left(8 a^{2} + 11\right)\cdot 13^{2} + \left(7 a^{2} + 11 a + 12\right)\cdot 13^{3} + \left(9 a^{2} + 10 a + 11\right)\cdot 13^{4} + \left(8 a^{2} + 9 a + 12\right)\cdot 13^{5} + \left(11 a + 7\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 12 + \left(6 a + 7\right)\cdot 13 + \left(4 a^{2} + 11 a + 1\right)\cdot 13^{2} + \left(8 a^{2} + 6 a + 11\right)\cdot 13^{3} + \left(7 a^{2} + 10 a + 8\right)\cdot 13^{4} + \left(6 a^{2} + 4 a + 12\right)\cdot 13^{5} + \left(8 a^{2} + 12\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{2} + 3 a + 4 + \left(2 a^{2} + 6 a + 12\right)\cdot 13 + \left(4 a^{2} + 7 a + 8\right)\cdot 13^{2} + \left(3 a + 10\right)\cdot 13^{3} + \left(10 a^{2} + 6\right)\cdot 13^{4} + \left(4 a^{2} + 6 a + 5\right)\cdot 13^{5} + 7 a\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 a^{2} + 4 a + 11 + \left(8 a^{2} + 6 a + 10\right)\cdot 13 + \left(2 a^{2} + 2 a + 12\right)\cdot 13^{2} + \left(a^{2} + 7 a + 5\right)\cdot 13^{3} + \left(a^{2} + 9 a + 4\right)\cdot 13^{4} + \left(9 a^{2} + 5 a + 7\right)\cdot 13^{5} + \left(8 a^{2} + 10 a + 4\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 2 a + 4 + \left(3 a^{2} + 4 a + 9\right)\cdot 13 + \left(8 a^{2} + 3 a + 5\right)\cdot 13^{2} + \left(11 a^{2} + a + 8\right)\cdot 13^{3} + \left(6 a^{2} + 2 a + 2\right)\cdot 13^{4} + \left(3 a^{2} + 2 a + 8\right)\cdot 13^{5} + \left(12 a^{2} + a + 7\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 3 a + \left(4 a^{2} + 5\right)\cdot 13 + \left(6 a^{2} + 12 a\right)\cdot 13^{2} + \left(3 a^{2} + 11 a + 9\right)\cdot 13^{3} + \left(4 a^{2} + 5 a + 8\right)\cdot 13^{4} + \left(10 a^{2} + 2 a + 4\right)\cdot 13^{5} + \left(8 a^{2} + 2 a\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 2 a^{2} + 9 a + \left(6 a^{2} + 6 a\right)\cdot 13 + \left(6 a^{2} + 9 a + 9\right)\cdot 13^{2} + \left(2 a^{2} + 3 a + 1\right)\cdot 13^{3} + \left(3 a^{2} + 3 a + 12\right)\cdot 13^{4} + \left(11 a + 5\right)\cdot 13^{5} + \left(2 a^{2} + 4 a + 5\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 8 }$ $=$ $ a^{2} + 8 a + 6 + \left(7 a^{2} + 2 a + 5\right)\cdot 13 + \left(2 a + 8\right)\cdot 13^{2} + \left(a^{2} + 8 a + 11\right)\cdot 13^{3} + \left(9 a^{2} + 10 a + 9\right)\cdot 13^{4} + \left(4 a^{2} + 4 a + 9\right)\cdot 13^{5} + \left(4 a + 4\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 8 a^{2} + 8 a + 8 + \left(10 a^{2} + 7 a + 1\right)\cdot 13 + \left(10 a^{2} + 2 a + 6\right)\cdot 13^{2} + \left(2 a^{2} + 11 a + 6\right)\cdot 13^{3} + \left(11 a + 12\right)\cdot 13^{4} + \left(4 a^{2} + 4 a + 10\right)\cdot 13^{5} + \left(10 a^{2} + 9 a + 7\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4)(3,6)(8,9)$
$(2,9)(3,7)(4,5)$
$(1,2,3)(4,8,7)(5,9,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(3,6)(8,9)$$0$
$1$$3$$(1,6,8)(2,5,7)(3,9,4)$$2 \zeta_{3}$
$1$$3$$(1,8,6)(2,7,5)(3,4,9)$$-2 \zeta_{3} - 2$
$2$$3$$(1,2,3)(4,8,7)(5,9,6)$$\zeta_{3} + 1$
$2$$3$$(1,3,2)(4,7,8)(5,6,9)$$-\zeta_{3}$
$2$$3$$(1,5,4)(2,9,8)(3,6,7)$$-1$
$3$$6$$(1,8,6)(2,3,5,9,7,4)$$0$
$3$$6$$(1,6,8)(2,4,7,9,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.