Properties

Label 2.2e2_3e3_5e2_19.6t3.5
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$51300= 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 30 x^{4} - 60 x^{3} + 1125 x^{2} - 3900 x + 7300 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 10 + 10\cdot 17 + 6\cdot 17^{2} + 2\cdot 17^{3} + 2\cdot 17^{4} + 5\cdot 17^{5} + 9\cdot 17^{6} + 2\cdot 17^{7} + 13\cdot 17^{8} + 7\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 10 + \left(8 a + 9\right)\cdot 17 + \left(5 a + 6\right)\cdot 17^{2} + \left(8 a + 14\right)\cdot 17^{3} + \left(7 a + 7\right)\cdot 17^{4} + 9\cdot 17^{5} + 12\cdot 17^{6} + \left(16 a + 7\right)\cdot 17^{7} + \left(2 a + 8\right)\cdot 17^{8} + \left(13 a + 16\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 4 + \left(2 a + 8\right)\cdot 17 + \left(14 a + 14\right)\cdot 17^{2} + \left(5 a + 11\right)\cdot 17^{3} + \left(10 a + 5\right)\cdot 17^{4} + \left(15 a + 6\right)\cdot 17^{5} + \left(16 a + 5\right)\cdot 17^{6} + \left(12 a + 7\right)\cdot 17^{7} + \left(15 a + 15\right)\cdot 17^{8} + \left(3 a + 11\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 11 + 12\cdot 17 + 10\cdot 17^{2} + 17^{3} + 17^{4} + 16\cdot 17^{5} + 4\cdot 17^{6} + 6\cdot 17^{7} + 5\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 2 + \left(14 a + 13\right)\cdot 17 + \left(2 a + 8\right)\cdot 17^{2} + \left(11 a + 3\right)\cdot 17^{3} + \left(6 a + 10\right)\cdot 17^{4} + \left(a + 11\right)\cdot 17^{5} + 6\cdot 17^{6} + \left(4 a + 3\right)\cdot 17^{7} + \left(a + 1\right)\cdot 17^{8} + 13 a\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 14 + \left(8 a + 13\right)\cdot 17 + \left(11 a + 3\right)\cdot 17^{2} + 8 a\cdot 17^{3} + \left(9 a + 7\right)\cdot 17^{4} + \left(16 a + 2\right)\cdot 17^{5} + \left(16 a + 12\right)\cdot 17^{6} + 6\cdot 17^{7} + \left(14 a + 12\right)\cdot 17^{8} + \left(3 a + 9\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,5)(4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$3$ $2$ $(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$
$2$ $6$ $(1,3,2,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.