Properties

Label 2.2e2_3e3_23e2.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{3} \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$57132= 2^{2} \cdot 3^{3} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 21 x^{4} - 33 x^{3} + 120 x^{2} - 174 x + 254 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 21 + \left(a + 24\right)\cdot 29 + \left(23 a + 4\right)\cdot 29^{2} + \left(11 a + 18\right)\cdot 29^{3} + \left(24 a + 16\right)\cdot 29^{4} + \left(9 a + 26\right)\cdot 29^{5} + \left(26 a + 13\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 13 + \left(a + 26\right)\cdot 29 + \left(23 a + 6\right)\cdot 29^{2} + \left(11 a + 13\right)\cdot 29^{3} + \left(24 a + 17\right)\cdot 29^{4} + \left(9 a + 5\right)\cdot 29^{5} + \left(26 a + 3\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 14 + 29 + 6\cdot 29^{2} + 17\cdot 29^{3} + 15\cdot 29^{4} + 19\cdot 29^{5} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 14 + \left(27 a + 16\right)\cdot 29 + \left(5 a + 2\right)\cdot 29^{2} + \left(17 a + 25\right)\cdot 29^{3} + \left(4 a + 10\right)\cdot 29^{4} + \left(19 a + 22\right)\cdot 29^{5} + \left(2 a + 19\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 6 + \left(27 a + 18\right)\cdot 29 + \left(5 a + 4\right)\cdot 29^{2} + \left(17 a + 20\right)\cdot 29^{3} + \left(4 a + 11\right)\cdot 29^{4} + \left(19 a + 1\right)\cdot 29^{5} + \left(2 a + 9\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 22 + 28\cdot 29 + 3\cdot 29^{2} + 22\cdot 29^{3} + 14\cdot 29^{4} + 11\cdot 29^{5} + 11\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5)(4,6)$
$(1,3,4,2,6,5)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,6)(4,5)$$-2$
$3$$2$$(3,5)(4,6)$$0$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$2$$3$$(1,4,6)(2,5,3)$$-1$
$2$$6$$(1,3,4,2,6,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.