Properties

Label 2.2e2_3e3_13.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3^{3} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1404= 2^{2} \cdot 3^{3} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - 10 x^{3} + 52 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_13.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 24 + \left(35 a + 23\right)\cdot 47 + \left(37 a + 14\right)\cdot 47^{2} + \left(15 a + 38\right)\cdot 47^{3} + \left(45 a + 15\right)\cdot 47^{4} + \left(27 a + 2\right)\cdot 47^{5} + 16\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 12 + \left(14 a + 9\right)\cdot 47 + \left(37 a + 10\right)\cdot 47^{2} + \left(9 a + 44\right)\cdot 47^{3} + 40\cdot 47^{4} + \left(43 a + 43\right)\cdot 47^{5} + \left(24 a + 21\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 5 + \left(32 a + 18\right)\cdot 47 + \left(9 a + 23\right)\cdot 47^{2} + \left(37 a + 26\right)\cdot 47^{3} + \left(46 a + 31\right)\cdot 47^{4} + \left(3 a + 35\right)\cdot 47^{5} + \left(22 a + 28\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 1 + \left(11 a + 35\right)\cdot 47 + \left(9 a + 7\right)\cdot 47^{2} + \left(31 a + 32\right)\cdot 47^{3} + \left(a + 43\right)\cdot 47^{4} + \left(19 a + 12\right)\cdot 47^{5} + \left(46 a + 36\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 18 + \left(26 a + 5\right)\cdot 47 + \left(46 a + 9\right)\cdot 47^{2} + \left(40 a + 29\right)\cdot 47^{3} + \left(a + 46\right)\cdot 47^{4} + \left(15 a + 8\right)\cdot 47^{5} + \left(24 a + 2\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 34 + \left(20 a + 2\right)\cdot 47 + 29\cdot 47^{2} + \left(6 a + 17\right)\cdot 47^{3} + \left(45 a + 9\right)\cdot 47^{4} + \left(31 a + 37\right)\cdot 47^{5} + \left(22 a + 35\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,3)(2,4,6)$
$(1,6)(2,5)(3,4)$
$(2,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,5)(3,4)$$0$
$1$$3$$(1,5,3)(2,4,6)$$2 \zeta_{3}$
$1$$3$$(1,3,5)(2,6,4)$$-2 \zeta_{3} - 2$
$2$$3$$(2,6,4)$$-\zeta_{3}$
$2$$3$$(2,4,6)$$\zeta_{3} + 1$
$2$$3$$(1,3,5)(2,4,6)$$-1$
$3$$6$$(1,2,3,6,5,4)$$0$
$3$$6$$(1,4,5,6,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.