Properties

Label 2.2e2_3e2_7e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1764= 2^{2} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 10 x^{5} + 13 x^{4} - 24 x^{3} + 72 x^{2} - 72 x + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 2\cdot 29 + 20\cdot 29^{2} + 26\cdot 29^{3} + 2\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 15\cdot 29 + 22\cdot 29^{2} + 20\cdot 29^{3} + 25\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 24\cdot 29 + 18\cdot 29^{2} + 5\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 29 + 8\cdot 29^{2} + 17\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 11\cdot 29^{2} + 8\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 + 9\cdot 29 + 4\cdot 29^{2} + 10\cdot 29^{3} + 4\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 25 + 9\cdot 29 + 7\cdot 29^{2} + 22\cdot 29^{3} + 8\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 28 + 22\cdot 29 + 23\cdot 29^{2} + 4\cdot 29^{3} + 19\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,7)(5,8)$
$(1,3,8,7)(2,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,5)(3,7)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,7)(5,8)$$0$
$2$$2$$(1,4)(2,3)(5,7)(6,8)$$0$
$2$$4$$(1,3,8,7)(2,4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.