Properties

Label 2.2e2_3e2_61.8t11.1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 61 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$2196= 2^{2} \cdot 3^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - x^{6} + 8 x^{5} + 31 x^{4} - 50 x^{3} - 43 x^{2} + 58 x + 97 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 229 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 209\cdot 229 + 166\cdot 229^{2} + 191\cdot 229^{3} + 17\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 118\cdot 229 + 33\cdot 229^{2} + 215\cdot 229^{3} + 49\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 150\cdot 229 + 10\cdot 229^{2} + 192\cdot 229^{3} + 148\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 73 + 97\cdot 229 + 120\cdot 229^{2} + 180\cdot 229^{3} + 144\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 78 + 206\cdot 229 + 217\cdot 229^{2} + 32\cdot 229^{3} + 176\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 137 + 33\cdot 229 + 137\cdot 229^{2} + 99\cdot 229^{3} + 16\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 158 + 137\cdot 229 + 6\cdot 229^{2} + 15\cdot 229^{3} + 7\cdot 229^{4} +O\left(229^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 170 + 192\cdot 229 + 222\cdot 229^{2} + 217\cdot 229^{3} + 125\cdot 229^{4} +O\left(229^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(5,8)$
$(1,3,6,7)(2,8,4,5)$
$(1,6)(2,4)(3,7)(5,8)$
$(1,2,6,4)(3,8,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,4)(3,7)(5,8)$ $-2$ $-2$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$ $0$
$2$ $2$ $(2,4)(5,8)$ $0$ $0$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$ $0$
$1$ $4$ $(1,3,6,7)(2,8,4,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,7,6,3)(2,5,4,8)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,2,6,4)(3,8,7,5)$ $0$ $0$
$2$ $4$ $(1,3,6,7)(2,5,4,8)$ $0$ $0$
$2$ $4$ $(1,8,6,5)(2,3,4,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.