Properties

Label 2.900.4t3.b
Dimension $2$
Group $D_{4}$
Conductor $900$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.13500.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: \(\Q(i, \sqrt{15})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 35 + 25\cdot 113 + 78\cdot 113^{2} + 31\cdot 113^{3} + 91\cdot 113^{4} +O(113^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 40 + 112\cdot 113 + 88\cdot 113^{2} + 28\cdot 113^{3} + 28\cdot 113^{4} +O(113^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 73 + 24\cdot 113^{2} + 84\cdot 113^{3} + 84\cdot 113^{4} +O(113^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 78 + 87\cdot 113 + 34\cdot 113^{2} + 81\cdot 113^{3} + 21\cdot 113^{4} +O(113^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.