Properties

Label 2.2e2_3e2_5_7_17e2.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$364140= 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 46 x^{4} - 83 x^{3} + 550 x^{2} - 655 x + 1675 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + \left(15 a + 3\right)\cdot 19 + \left(18 a + 18\right)\cdot 19^{2} + \left(8 a + 12\right)\cdot 19^{3} + \left(7 a + 12\right)\cdot 19^{4} + \left(3 a + 17\right)\cdot 19^{5} + \left(10 a + 8\right)\cdot 19^{6} + \left(12 a + 3\right)\cdot 19^{7} + 2\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 6 + \left(3 a + 9\right)\cdot 19 + 15\cdot 19^{2} + 10 a\cdot 19^{3} + 11 a\cdot 19^{4} + \left(15 a + 16\right)\cdot 19^{5} + \left(8 a + 5\right)\cdot 19^{6} + \left(6 a + 11\right)\cdot 19^{7} + \left(18 a + 4\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 1 + \left(3 a + 17\right)\cdot 19 + 2\cdot 19^{2} + \left(10 a + 3\right)\cdot 19^{3} + \left(11 a + 11\right)\cdot 19^{4} + \left(15 a + 13\right)\cdot 19^{5} + \left(8 a + 15\right)\cdot 19^{6} + \left(6 a + 5\right)\cdot 19^{7} + \left(18 a + 9\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 4 }$ $=$ $ a + 5 + \left(15 a + 14\right)\cdot 19 + \left(18 a + 11\right)\cdot 19^{2} + \left(8 a + 10\right)\cdot 19^{3} + \left(7 a + 1\right)\cdot 19^{4} + \left(3 a + 1\right)\cdot 19^{5} + \left(10 a + 18\right)\cdot 19^{6} + \left(12 a + 8\right)\cdot 19^{7} + 16\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 17 + 2\cdot 19 + 19^{2} + 4\cdot 19^{3} + 10\cdot 19^{4} + 5\cdot 19^{5} + 18\cdot 19^{6} + 6\cdot 19^{7} +O\left(19^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 12 + 10\cdot 19 + 7\cdot 19^{2} + 6\cdot 19^{3} + 2\cdot 19^{4} + 3\cdot 19^{5} + 9\cdot 19^{6} + 19^{7} + 5\cdot 19^{8} +O\left(19^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,2)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,6)$ $-2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$3$ $2$ $(1,6)(4,5)$ $0$
$2$ $3$ $(1,3,6)(2,5,4)$ $-1$
$2$ $6$ $(1,5,3,4,6,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.