Properties

Label 2.2e2_3e2_5_7_17e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$364140= 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 161 x^{4} + 301 x^{3} + 8224 x^{2} - 12028 x - 68444 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.5_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 18 + \left(29 a + 4\right)\cdot 31 + \left(27 a + 29\right)\cdot 31^{2} + \left(18 a + 3\right)\cdot 31^{3} + \left(22 a + 3\right)\cdot 31^{4} + \left(a + 23\right)\cdot 31^{5} + 29 a\cdot 31^{6} + \left(28 a + 20\right)\cdot 31^{7} + 14 a\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 1 + \left(30 a + 3\right)\cdot 31 + \left(9 a + 26\right)\cdot 31^{2} + \left(4 a + 2\right)\cdot 31^{3} + \left(10 a + 25\right)\cdot 31^{4} + \left(25 a + 29\right)\cdot 31^{5} + \left(27 a + 23\right)\cdot 31^{6} + \left(21 a + 7\right)\cdot 31^{7} + 24\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 24 + \left(a + 28\right)\cdot 31 + \left(3 a + 24\right)\cdot 31^{2} + \left(12 a + 13\right)\cdot 31^{3} + \left(8 a + 29\right)\cdot 31^{4} + \left(29 a + 3\right)\cdot 31^{5} + \left(a + 26\right)\cdot 31^{6} + \left(2 a + 17\right)\cdot 31^{7} + \left(16 a + 1\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 25 + 30\cdot 31 + 2\cdot 31^{2} + 16\cdot 31^{3} + 6\cdot 31^{4} + 21\cdot 31^{5} + 26\cdot 31^{6} + 6\cdot 31^{7} + 29\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 18 + 9\cdot 31 + \left(21 a + 15\right)\cdot 31^{2} + \left(26 a + 1\right)\cdot 31^{3} + \left(20 a + 10\right)\cdot 31^{4} + \left(5 a + 8\right)\cdot 31^{5} + \left(3 a + 23\right)\cdot 31^{6} + \left(9 a + 23\right)\cdot 31^{7} + \left(30 a + 3\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 10 + 16\cdot 31 + 25\cdot 31^{2} + 23\cdot 31^{3} + 18\cdot 31^{4} + 6\cdot 31^{5} + 23\cdot 31^{6} + 16\cdot 31^{7} + 2\cdot 31^{8} +O\left(31^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3)(2,5)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,5)(4,6)$$-2$
$3$$2$$(1,3)(2,5)$$0$
$3$$2$$(1,5)(2,3)(4,6)$$0$
$2$$3$$(1,4,3)(2,6,5)$$-1$
$2$$6$$(1,6,3,2,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.