Properties

Label 2.2e2_3e2_5_71.6t3.3c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 \cdot 71 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$12780= 2^{2} \cdot 3^{2} \cdot 5 \cdot 71 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 6 x^{4} - 29 x^{3} + 42 x^{2} - 85 x + 289 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.5_71.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 29 + \left(24 a + 20\right)\cdot 31 + \left(8 a + 26\right)\cdot 31^{2} + 25\cdot 31^{3} + \left(17 a + 16\right)\cdot 31^{4} + \left(21 a + 1\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 + 19\cdot 31 + 26\cdot 31^{2} + 26\cdot 31^{3} + 10\cdot 31^{4} + 7\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 16 + \left(6 a + 29\right)\cdot 31 + \left(22 a + 19\right)\cdot 31^{2} + \left(30 a + 17\right)\cdot 31^{3} + \left(13 a + 19\right)\cdot 31^{4} + \left(9 a + 27\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 12 + \left(7 a + 26\right)\cdot 31 + \left(11 a + 28\right)\cdot 31^{2} + \left(26 a + 7\right)\cdot 31^{3} + \left(8 a + 5\right)\cdot 31^{4} + \left(4 a + 28\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 28 + \left(23 a + 1\right)\cdot 31 + \left(19 a + 13\right)\cdot 31^{2} + \left(4 a + 18\right)\cdot 31^{3} + \left(22 a + 27\right)\cdot 31^{4} + \left(26 a + 27\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 23 + 25\cdot 31 + 8\cdot 31^{2} + 27\cdot 31^{3} + 12\cdot 31^{4} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,2,3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,5)$$-2$
$3$$2$$(2,5)(3,6)$$0$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$2$$3$$(1,3,6)(2,4,5)$$-1$
$2$$6$$(1,2,3,4,6,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.