Properties

Label 2.2e2_3e2_53.8t11.3
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 53 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1908= 2^{2} \cdot 3^{2} \cdot 53 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 7 x^{6} + 4 x^{5} + 43 x^{4} + 8 x^{3} - 139 x^{2} - 16 x + 157 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 20\cdot 97 + 46\cdot 97^{2} + 61\cdot 97^{3} + 78\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 80\cdot 97 + 62\cdot 97^{2} + 3\cdot 97^{3} + 8\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 95\cdot 97 + 79\cdot 97^{2} + 36\cdot 97^{3} + 35\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 + 84\cdot 97 + 32\cdot 97^{2} + 12\cdot 97^{3} + 46\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 22\cdot 97 + 62\cdot 97^{2} + 33\cdot 97^{3} + 88\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 7\cdot 97 + 12\cdot 97^{2} + 36\cdot 97^{3} + 26\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 80 + 66\cdot 97 + 52\cdot 97^{2} + 86\cdot 97^{3} + 77\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 94 + 10\cdot 97 + 39\cdot 97^{2} + 20\cdot 97^{3} + 27\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,4)(3,6)$
$(1,7,4,5)(2,3,8,6)$
$(1,6,4,3)(2,5,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,8)(3,6)(5,7)$ $-2$ $-2$
$2$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $0$ $0$
$2$ $2$ $(1,4)(3,6)$ $0$ $0$
$2$ $2$ $(1,5)(2,3)(4,7)(6,8)$ $0$ $0$
$1$ $4$ $(1,6,4,3)(2,5,8,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,3,4,6)(2,7,8,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,7,4,5)(2,3,8,6)$ $0$ $0$
$2$ $4$ $(1,3,4,6)(2,5,8,7)$ $0$ $0$
$2$ $4$ $(1,8,4,2)(3,5,6,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.