Properties

Label 2.2e2_3e2_523.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 523 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$18828= 2^{2} \cdot 3^{2} \cdot 523 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 10 x^{4} + 19 x^{3} + 106 x^{2} - 165 x + 225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.523.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 31 + \left(17 a + 15\right)\cdot 37 + 21 a\cdot 37^{2} + \left(19 a + 6\right)\cdot 37^{3} + \left(10 a + 1\right)\cdot 37^{4} + \left(3 a + 26\right)\cdot 37^{5} + \left(20 a + 35\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 34 a + 26 + \left(3 a + 13\right)\cdot 37 + \left(25 a + 10\right)\cdot 37^{2} + \left(25 a + 25\right)\cdot 37^{3} + \left(34 a + 3\right)\cdot 37^{4} + \left(2 a + 19\right)\cdot 37^{5} + \left(36 a + 19\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 8 + 12\cdot 37 + 20\cdot 37^{2} + 9\cdot 37^{3} + 28\cdot 37^{4} + 23\cdot 37^{5} + 10\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 10 + \left(19 a + 6\right)\cdot 37 + \left(15 a + 32\right)\cdot 37^{2} + \left(17 a + 25\right)\cdot 37^{3} + \left(26 a + 23\right)\cdot 37^{4} + \left(33 a + 28\right)\cdot 37^{5} + \left(16 a + 1\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 23 + 30\cdot 37 + 14\cdot 37^{2} + 15\cdot 37^{3} + 11\cdot 37^{4} + 17\cdot 37^{5} + 30\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 14 + \left(33 a + 32\right)\cdot 37 + \left(11 a + 32\right)\cdot 37^{2} + \left(11 a + 28\right)\cdot 37^{3} + \left(2 a + 5\right)\cdot 37^{4} + \left(34 a + 33\right)\cdot 37^{5} + 12\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,5)$$-2$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$3$$2$$(1,5)(3,6)$$0$
$2$$3$$(1,4,5)(2,3,6)$$-1$
$2$$6$$(1,3,4,6,5,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.