Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 a + 31 + \left(17 a + 15\right)\cdot 37 + 21 a\cdot 37^{2} + \left(19 a + 6\right)\cdot 37^{3} + \left(10 a + 1\right)\cdot 37^{4} + \left(3 a + 26\right)\cdot 37^{5} + \left(20 a + 35\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 34 a + 26 + \left(3 a + 13\right)\cdot 37 + \left(25 a + 10\right)\cdot 37^{2} + \left(25 a + 25\right)\cdot 37^{3} + \left(34 a + 3\right)\cdot 37^{4} + \left(2 a + 19\right)\cdot 37^{5} + \left(36 a + 19\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 + 12\cdot 37 + 20\cdot 37^{2} + 9\cdot 37^{3} + 28\cdot 37^{4} + 23\cdot 37^{5} + 10\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 33 a + 10 + \left(19 a + 6\right)\cdot 37 + \left(15 a + 32\right)\cdot 37^{2} + \left(17 a + 25\right)\cdot 37^{3} + \left(26 a + 23\right)\cdot 37^{4} + \left(33 a + 28\right)\cdot 37^{5} + \left(16 a + 1\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 + 30\cdot 37 + 14\cdot 37^{2} + 15\cdot 37^{3} + 11\cdot 37^{4} + 17\cdot 37^{5} + 30\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 3 a + 14 + \left(33 a + 32\right)\cdot 37 + \left(11 a + 32\right)\cdot 37^{2} + \left(11 a + 28\right)\cdot 37^{3} + \left(2 a + 5\right)\cdot 37^{4} + \left(34 a + 33\right)\cdot 37^{5} + 12\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3)(4,5)$ |
| $(1,2)(3,5)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,6)(2,4)(3,5)$ |
$-2$ |
| $3$ |
$2$ |
$(1,2)(3,5)(4,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,5)(3,6)$ |
$0$ |
| $2$ |
$3$ |
$(1,4,5)(2,3,6)$ |
$-1$ |
| $2$ |
$6$ |
$(1,3,4,6,5,2)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.