Properties

Label 2.2e2_3e2_523.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 523 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$18828= 2^{2} \cdot 3^{2} \cdot 523 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 41 x^{4} + 136 x^{3} + 347 x^{2} - 1974 x - 4067 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 22\cdot 47 + 38\cdot 47^{2} + 22\cdot 47^{3} + 42\cdot 47^{4} + 12\cdot 47^{5} + 41\cdot 47^{6} + 42\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 36 + \left(44 a + 19\right)\cdot 47 + \left(17 a + 8\right)\cdot 47^{2} + \left(39 a + 5\right)\cdot 47^{3} + \left(35 a + 33\right)\cdot 47^{4} + \left(34 a + 23\right)\cdot 47^{5} + \left(46 a + 20\right)\cdot 47^{6} + \left(26 a + 45\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 44 + 20 a\cdot 47 + \left(31 a + 26\right)\cdot 47^{2} + \left(41 a + 6\right)\cdot 47^{3} + \left(30 a + 27\right)\cdot 47^{4} + \left(5 a + 43\right)\cdot 47^{5} + \left(45 a + 46\right)\cdot 47^{6} + \left(25 a + 32\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 7 + \left(2 a + 5\right)\cdot 47 + 29 a\cdot 47^{2} + \left(7 a + 19\right)\cdot 47^{3} + \left(11 a + 18\right)\cdot 47^{4} + \left(12 a + 10\right)\cdot 47^{5} + 32\cdot 47^{6} + \left(20 a + 5\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 36 a + 19 + \left(26 a + 30\right)\cdot 47 + \left(15 a + 21\right)\cdot 47^{2} + \left(5 a + 11\right)\cdot 47^{3} + 16 a\cdot 47^{4} + \left(41 a + 24\right)\cdot 47^{5} + \left(a + 37\right)\cdot 47^{6} + \left(21 a + 39\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 32 + 15\cdot 47 + 46\cdot 47^{2} + 28\cdot 47^{3} + 19\cdot 47^{4} + 26\cdot 47^{5} + 9\cdot 47^{6} + 21\cdot 47^{7} +O\left(47^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)$
$(1,3)(2,6)(4,5)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-2$
$3$ $2$ $(1,2)(3,6)$ $0$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$
$2$ $3$ $(1,4,2)(3,6,5)$ $-1$
$2$ $6$ $(1,5,2,6,4,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.