Properties

Label 2.2e2_3e2_5.8t11.3c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$180= 2^{2} \cdot 3^{2} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + x^{6} + 3 x^{5} - 3 x^{3} + x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e2_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 39 + 104\cdot 109 + 99\cdot 109^{2} + 9\cdot 109^{3} + 90\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 44 + 32\cdot 109 + 55\cdot 109^{2} + 67\cdot 109^{3} + 53\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 52 + 93\cdot 109 + 47\cdot 109^{2} + 66\cdot 109^{3} + 43\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 + 61\cdot 109 + 25\cdot 109^{2} + 45\cdot 109^{3} + 35\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 77 + 12\cdot 109 + 20\cdot 109^{2} + 13\cdot 109^{3} + 76\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 89 + 94\cdot 109 + 100\cdot 109^{2} + 109^{3} + 11\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 92 + 74\cdot 109 + 77\cdot 109^{2} + 6\cdot 109^{3} + 14\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 95 + 70\cdot 109 + 8\cdot 109^{2} + 7\cdot 109^{3} + 3\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,8,5)(2,6,3,4)$
$(1,7,8,5)(2,4,3,6)$
$(1,8)(2,3)(4,6)(5,7)$
$(1,6,8,4)(2,5,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,3)(4,6)(5,7)$$-2$
$2$$2$$(1,2)(3,8)(4,7)(5,6)$$0$
$2$$2$$(2,3)(4,6)$$0$
$2$$2$$(1,6)(2,7)(3,5)(4,8)$$0$
$1$$4$$(1,7,8,5)(2,4,3,6)$$2 \zeta_{4}$
$1$$4$$(1,5,8,7)(2,6,3,4)$$-2 \zeta_{4}$
$2$$4$$(1,6,8,4)(2,5,3,7)$$0$
$2$$4$$(1,7,8,5)(2,6,3,4)$$0$
$2$$4$$(1,2,8,3)(4,5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.