Properties

Label 2.180.8t11.c
Dimension $2$
Group $Q_8:C_2$
Conductor $180$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Artin number field: Galois closure of 8.0.7290000.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{15})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 39 + 104\cdot 109 + 99\cdot 109^{2} + 9\cdot 109^{3} + 90\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 44 + 32\cdot 109 + 55\cdot 109^{2} + 67\cdot 109^{3} + 53\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 52 + 93\cdot 109 + 47\cdot 109^{2} + 66\cdot 109^{3} + 43\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 60 + 61\cdot 109 + 25\cdot 109^{2} + 45\cdot 109^{3} + 35\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 77 + 12\cdot 109 + 20\cdot 109^{2} + 13\cdot 109^{3} + 76\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 89 + 94\cdot 109 + 100\cdot 109^{2} + 109^{3} + 11\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 92 + 74\cdot 109 + 77\cdot 109^{2} + 6\cdot 109^{3} + 14\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 95 + 70\cdot 109 + 8\cdot 109^{2} + 7\cdot 109^{3} + 3\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,8,5)(2,6,3,4)$
$(1,7,8,5)(2,4,3,6)$
$(1,8)(2,3)(4,6)(5,7)$
$(1,6,8,4)(2,5,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,3)(4,6)(5,7)$ $-2$ $-2$
$2$ $2$ $(1,2)(3,8)(4,7)(5,6)$ $0$ $0$
$2$ $2$ $(2,3)(4,6)$ $0$ $0$
$2$ $2$ $(1,6)(2,7)(3,5)(4,8)$ $0$ $0$
$1$ $4$ $(1,7,8,5)(2,4,3,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,5,8,7)(2,6,3,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,8,4)(2,5,3,7)$ $0$ $0$
$2$ $4$ $(1,7,8,5)(2,6,3,4)$ $0$ $0$
$2$ $4$ $(1,2,8,3)(4,5,6,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.