Properties

Label 2.2e2_3e2_5.8t11.2c1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$180= 2^{2} \cdot 3^{2} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - x^{6} + 10 x^{5} + x^{4} - 16 x^{3} - 7 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e2_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 101\cdot 109 + 38\cdot 109^{2} + 54\cdot 109^{3} + 48\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 59\cdot 109 + 23\cdot 109^{2} + 86\cdot 109^{3} + 69\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 73\cdot 109 + 31\cdot 109^{2} + 92\cdot 109^{3} + 47\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 17\cdot 109 + 37\cdot 109^{2} + 77\cdot 109^{3} + 2\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 + 93\cdot 109 + 14\cdot 109^{2} + 94\cdot 109^{3} + 51\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 86 + 98\cdot 109 + 20\cdot 109^{2} + 14\cdot 109^{3} + 44\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 94 + 90\cdot 109 + 21\cdot 109^{2} + 30\cdot 109^{3} + 18\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 105 + 10\cdot 109 + 29\cdot 109^{2} + 96\cdot 109^{3} + 43\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,6)(3,7)(4,5)$
$(4,8)(6,7)$
$(1,3,5,2)(4,7,8,6)$
$(1,5)(2,3)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,8)(6,7)$$-2$
$2$$2$$(1,8)(2,6)(3,7)(4,5)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$2$$(4,8)(6,7)$$0$
$1$$4$$(1,3,5,2)(4,6,8,7)$$-2 \zeta_{4}$
$1$$4$$(1,2,5,3)(4,7,8,6)$$2 \zeta_{4}$
$2$$4$$(1,3,5,2)(4,7,8,6)$$0$
$2$$4$$(1,4,5,8)(2,7,3,6)$$0$
$2$$4$$(1,7,5,6)(2,8,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.