Properties

Label 2.2e2_3e2_5.8t11.1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$180= 2^{2} \cdot 3^{2} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} + 4 x^{5} - 8 x^{4} + 2 x^{3} + 5 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 84\cdot 109 + 49\cdot 109^{2} + 42\cdot 109^{3} + 38\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 63\cdot 109 + 17\cdot 109^{2} + 87\cdot 109^{3} + 75\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 81\cdot 109 + 92\cdot 109^{2} + 9\cdot 109^{3} + 93\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 67 + 2\cdot 109 + 59\cdot 109^{2} + 90\cdot 109^{3} + 10\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 73 + 70\cdot 109 + 42\cdot 109^{2} + 104\cdot 109^{3} + 2\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 75 + 102\cdot 109 + 35\cdot 109^{2} + 67\cdot 109^{3} + 85\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 90 + 37\cdot 109 + 107\cdot 109^{2} + 36\cdot 109^{3} + 35\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 99 + 102\cdot 109 + 30\cdot 109^{2} + 106\cdot 109^{3} + 93\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,5)(3,8)(6,7)$
$(2,5)(6,7)$
$(1,6,4,7)(2,3,5,8)$
$(1,3,4,8)(2,6,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $-2$ $-2$
$2$ $2$ $(1,5)(2,4)(3,7)(6,8)$ $0$ $0$
$2$ $2$ $(2,5)(6,7)$ $0$ $0$
$2$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $0$ $0$
$1$ $4$ $(1,3,4,8)(2,6,5,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,8,4,3)(2,7,5,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,4,7)(2,3,5,8)$ $0$ $0$
$2$ $4$ $(1,3,4,8)(2,7,5,6)$ $0$ $0$
$2$ $4$ $(1,5,4,2)(3,7,8,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.