Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 22 a^{2} + 12 a + 16 + \left(9 a^{2} + 8 a + 2\right)\cdot 23 + \left(2 a^{2} + 5 a + 13\right)\cdot 23^{2} + \left(a^{2} + 17 a + 13\right)\cdot 23^{3} + \left(2 a^{2} + 17 a + 11\right)\cdot 23^{4} + \left(7 a^{2} + 3 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 a^{2} + 19 a + 6 + \left(a^{2} + 13 a + 2\right)\cdot 23 + \left(11 a^{2} + 16 a + 11\right)\cdot 23^{2} + \left(6 a^{2} + 9 a + 12\right)\cdot 23^{3} + \left(9 a^{2} + 11 a + 18\right)\cdot 23^{4} + \left(15 a^{2} + 11 a + 10\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 a^{2} + 14 a + 19 + \left(5 a^{2} + 6 a + 11\right)\cdot 23 + \left(6 a^{2} + 11 a + 10\right)\cdot 23^{2} + \left(14 a^{2} + 5 a\right)\cdot 23^{3} + \left(12 a^{2} + 9 a + 18\right)\cdot 23^{4} + \left(5 a^{2} + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 17 a^{2} + 11 a + 1 + \left(19 a^{2} + 3 a + 11\right)\cdot 23 + \left(9 a^{2} + 2 a + 9\right)\cdot 23^{2} + \left(6 a^{2} + 5 a + 12\right)\cdot 23^{3} + \left(12 a^{2} + 4 a + 22\right)\cdot 23^{4} + \left(4 a^{2} + 20 a + 3\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 17 a^{2} + 20 a + 17 + \left(7 a^{2} + 7 a + 22\right)\cdot 23 + \left(14 a^{2} + 6 a + 5\right)\cdot 23^{2} + \left(7 a^{2} + 22\right)\cdot 23^{3} + \left(8 a^{2} + 19 a + 19\right)\cdot 23^{4} + \left(10 a^{2} + 18 a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 10 a^{2} + 5 a + 11 + \left(8 a^{2} + 5 a + 6\right)\cdot 23 + \left(15 a^{2} + a + 14\right)\cdot 23^{2} + \left(3 a^{2} + 4 a + 19\right)\cdot 23^{3} + \left(6 a^{2} + 18 a\right)\cdot 23^{4} + \left(13 a^{2} + 3 a + 5\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 17 a^{2} + 3 a + 5 + \left(22 a^{2} + 12 a + 10\right)\cdot 23 + \left(12 a^{2} + 3 a + 3\right)\cdot 23^{2} + \left(18 a^{2} + 1\right)\cdot 23^{3} + \left(8 a^{2} + 21 a + 12\right)\cdot 23^{4} + \left(14 a^{2} + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 19 a^{2} + 15 a + \left(14 a^{2} + 5 a + 15\right)\cdot 23 + \left(17 a^{2} + 18 a + 9\right)\cdot 23^{2} + 18 a\cdot 23^{3} + \left(8 a^{2} + 6 a + 11\right)\cdot 23^{4} + \left(18 a^{2} + 18 a + 19\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 14 a^{2} + 16 a + 20 + \left(a^{2} + 5 a + 9\right)\cdot 23 + \left(2 a^{2} + 4 a + 14\right)\cdot 23^{2} + \left(10 a^{2} + 8 a + 9\right)\cdot 23^{3} + \left(a^{2} + 7 a\right)\cdot 23^{4} + \left(3 a^{2} + 14 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,3,6,7,4,2)(5,9,8)$ |
| $(1,9)(4,8)(5,6)$ |
| $(2,5)(3,8)(7,9)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $3$ | $2$ | $(1,7)(2,6)(3,4)$ | $0$ |
| $1$ | $3$ | $(1,6,4)(2,3,7)(5,8,9)$ | $2 \zeta_{3}$ |
| $1$ | $3$ | $(1,4,6)(2,7,3)(5,9,8)$ | $-2 \zeta_{3} - 2$ |
| $2$ | $3$ | $(1,8,2)(3,6,9)(4,5,7)$ | $\zeta_{3} + 1$ |
| $2$ | $3$ | $(1,2,8)(3,9,6)(4,7,5)$ | $-\zeta_{3}$ |
| $2$ | $3$ | $(1,7,9)(2,5,6)(3,8,4)$ | $-1$ |
| $3$ | $6$ | $(1,3,6,7,4,2)(5,9,8)$ | $0$ |
| $3$ | $6$ | $(1,2,4,7,6,3)(5,8,9)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.