Properties

Label 2.2e2_3e2_5.6t5.2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{2} \cdot 3^{2} \cdot 5 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$180= 2^{2} \cdot 3^{2} \cdot 5 $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 3 x^{6} + 9 x^{5} - 21 x^{4} + 17 x^{3} - 6 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 22 a^{2} + 12 a + 16 + \left(9 a^{2} + 8 a + 2\right)\cdot 23 + \left(2 a^{2} + 5 a + 13\right)\cdot 23^{2} + \left(a^{2} + 17 a + 13\right)\cdot 23^{3} + \left(2 a^{2} + 17 a + 11\right)\cdot 23^{4} + \left(7 a^{2} + 3 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 a^{2} + 19 a + 6 + \left(a^{2} + 13 a + 2\right)\cdot 23 + \left(11 a^{2} + 16 a + 11\right)\cdot 23^{2} + \left(6 a^{2} + 9 a + 12\right)\cdot 23^{3} + \left(9 a^{2} + 11 a + 18\right)\cdot 23^{4} + \left(15 a^{2} + 11 a + 10\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 14 a + 19 + \left(5 a^{2} + 6 a + 11\right)\cdot 23 + \left(6 a^{2} + 11 a + 10\right)\cdot 23^{2} + \left(14 a^{2} + 5 a\right)\cdot 23^{3} + \left(12 a^{2} + 9 a + 18\right)\cdot 23^{4} + \left(5 a^{2} + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 17 a^{2} + 11 a + 1 + \left(19 a^{2} + 3 a + 11\right)\cdot 23 + \left(9 a^{2} + 2 a + 9\right)\cdot 23^{2} + \left(6 a^{2} + 5 a + 12\right)\cdot 23^{3} + \left(12 a^{2} + 4 a + 22\right)\cdot 23^{4} + \left(4 a^{2} + 20 a + 3\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 a^{2} + 20 a + 17 + \left(7 a^{2} + 7 a + 22\right)\cdot 23 + \left(14 a^{2} + 6 a + 5\right)\cdot 23^{2} + \left(7 a^{2} + 22\right)\cdot 23^{3} + \left(8 a^{2} + 19 a + 19\right)\cdot 23^{4} + \left(10 a^{2} + 18 a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 10 a^{2} + 5 a + 11 + \left(8 a^{2} + 5 a + 6\right)\cdot 23 + \left(15 a^{2} + a + 14\right)\cdot 23^{2} + \left(3 a^{2} + 4 a + 19\right)\cdot 23^{3} + \left(6 a^{2} + 18 a\right)\cdot 23^{4} + \left(13 a^{2} + 3 a + 5\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 17 a^{2} + 3 a + 5 + \left(22 a^{2} + 12 a + 10\right)\cdot 23 + \left(12 a^{2} + 3 a + 3\right)\cdot 23^{2} + \left(18 a^{2} + 1\right)\cdot 23^{3} + \left(8 a^{2} + 21 a + 12\right)\cdot 23^{4} + \left(14 a^{2} + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 19 a^{2} + 15 a + \left(14 a^{2} + 5 a + 15\right)\cdot 23 + \left(17 a^{2} + 18 a + 9\right)\cdot 23^{2} + 18 a\cdot 23^{3} + \left(8 a^{2} + 6 a + 11\right)\cdot 23^{4} + \left(18 a^{2} + 18 a + 19\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 9 }$ $=$ $ 14 a^{2} + 16 a + 20 + \left(a^{2} + 5 a + 9\right)\cdot 23 + \left(2 a^{2} + 4 a + 14\right)\cdot 23^{2} + \left(10 a^{2} + 8 a + 9\right)\cdot 23^{3} + \left(a^{2} + 7 a\right)\cdot 23^{4} + \left(3 a^{2} + 14 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,6,7,4,2)(5,9,8)$
$(1,9)(4,8)(5,6)$
$(2,5)(3,8)(7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,7)(2,6)(3,4)$ $0$ $0$
$1$ $3$ $(1,6,4)(2,3,7)(5,8,9)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,4,6)(2,7,3)(5,9,8)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,8,2)(3,6,9)(4,5,7)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,2,8)(3,9,6)(4,7,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,7,9)(2,5,6)(3,8,4)$ $-1$ $-1$
$3$ $6$ $(1,3,6,7,4,2)(5,9,8)$ $0$ $0$
$3$ $6$ $(1,2,4,7,6,3)(5,8,9)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.