Properties

Label 2.1476.8t6.a
Dimension $2$
Group $D_{8}$
Conductor $1476$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:\(1476\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 41 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.1429145856.1
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Projective image: $D_4$
Projective field: 4.0.656.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 197 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 21 + 93\cdot 197 + 77\cdot 197^{2} + 102\cdot 197^{3} + 196\cdot 197^{4} +O(197^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 39 + 150\cdot 197 + 15\cdot 197^{2} + 79\cdot 197^{3} + 172\cdot 197^{4} +O(197^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 61 + 31\cdot 197 + 175\cdot 197^{2} + 38\cdot 197^{3} + 183\cdot 197^{4} +O(197^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 101 + 8\cdot 197 + 162\cdot 197^{2} + 139\cdot 197^{3} + 29\cdot 197^{4} +O(197^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 104 + 28\cdot 197 + 20\cdot 197^{2} + 173\cdot 197^{3} + 103\cdot 197^{4} +O(197^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 112 + 79\cdot 197 + 82\cdot 197^{2} + 181\cdot 197^{3} + 119\cdot 197^{4} +O(197^{5})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 161 + 15\cdot 197 + 72\cdot 197^{2} + 167\cdot 197^{3} + 47\cdot 197^{4} +O(197^{5})\)  Toggle raw display
$r_{ 8 }$ $=$ \( 191 + 183\cdot 197 + 182\cdot 197^{2} + 102\cdot 197^{3} + 131\cdot 197^{4} +O(197^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(3,8)(4,7)$
$(1,8)(2,7)(3,4)(5,6)$
$(1,4)(2,5)(3,8)(6,7)$
$(1,6,4,7)(2,3,5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $-2$ $-2$
$4$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$ $0$
$4$ $2$ $(1,6)(3,8)(4,7)$ $0$ $0$
$2$ $4$ $(1,6,4,7)(2,3,5,8)$ $0$ $0$
$2$ $8$ $(1,3,7,2,4,8,6,5)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,2,6,3,4,5,7,8)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.