Properties

Label 2.2e2_3e2_41.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1476= 2^{2} \cdot 3^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{8} + 3 x^{6} + 53 x^{4} + 276 x^{2} + 100 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 54\cdot 61^{2} + 5\cdot 61^{3} + 53\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 19\cdot 61 + 41\cdot 61^{2} + 56\cdot 61^{3} + 56\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 11\cdot 61 + 46\cdot 61^{2} + 46\cdot 61^{3} + 59\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 19\cdot 61 + 35\cdot 61^{2} + 43\cdot 61^{3} + 60\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 + 41\cdot 61 + 25\cdot 61^{2} + 17\cdot 61^{3} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 + 49\cdot 61 + 14\cdot 61^{2} + 14\cdot 61^{3} + 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 41 + 41\cdot 61 + 19\cdot 61^{2} + 4\cdot 61^{3} + 4\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 43 + 60\cdot 61 + 6\cdot 61^{2} + 55\cdot 61^{3} + 7\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,7)(2,8,6,4)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,8)(2,3)(4,5)(6,7)$$0$
$2$$4$$(1,3,5,7)(2,8,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.