Properties

Label 2.2e2_3e2_41.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1476= 2^{2} \cdot 3^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{4} - 7 x^{2} - 6 x + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 23 + 41\cdot 61 + 26\cdot 61^{2} + 59\cdot 61^{3} + 11\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 + 30\cdot 61 + 20\cdot 61^{2} + 29\cdot 61^{3} + 59\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 53 + 60\cdot 61 + 5\cdot 61^{2} + 13\cdot 61^{3} + 57\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 + 49\cdot 61 + 7\cdot 61^{2} + 20\cdot 61^{3} + 54\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.