Properties

Label 2.2e2_3e2_41.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1476= 2^{2} \cdot 3^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - x^{2} + 16 x + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 10\cdot 61 + 27\cdot 61^{2} + 12\cdot 61^{3} + 45\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 18\cdot 61 + 40\cdot 61^{2} + 60\cdot 61^{3} + 19\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 5\cdot 61 + 21\cdot 61^{2} + 25\cdot 61^{3} + 9\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 + 26\cdot 61 + 33\cdot 61^{2} + 23\cdot 61^{3} + 47\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.