Properties

Label 2.2e2_3e2_37.8t11.1c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 37 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1332= 2^{2} \cdot 3^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 5 x^{6} + 4 x^{5} + 7 x^{4} + 20 x^{3} + 17 x^{2} + 56 x + 49 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e2_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 17\cdot 73 + 41\cdot 73^{2} + 28\cdot 73^{3} + 48\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 + 50\cdot 73 + 64\cdot 73^{2} + 12\cdot 73^{3} + 23\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 39\cdot 73 + 11\cdot 73^{2} + 73^{3} + 19\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 47 + 65\cdot 73 + 35\cdot 73^{2} + 70\cdot 73^{3} + 62\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 52 + 71\cdot 73 + 67\cdot 73^{2} + 48\cdot 73^{3} + 54\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 53 + 23\cdot 73 + 57\cdot 73^{2} + 45\cdot 73^{3} + 15\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 59 + 54\cdot 73 + 67\cdot 73^{2} + 55\cdot 73^{3} + 55\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 67 + 41\cdot 73 + 18\cdot 73^{2} + 28\cdot 73^{3} + 12\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,8)(3,4)(5,7)$
$(1,5,6,7)(2,3,8,4)$
$(1,2,6,8)(3,5,4,7)$
$(1,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,8)(3,4)(5,7)$$-2$
$2$$2$$(1,6)(5,7)$$0$
$2$$2$$(1,8)(2,6)(3,5)(4,7)$$0$
$2$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$1$$4$$(1,7,6,5)(2,3,8,4)$$2 \zeta_{4}$
$1$$4$$(1,5,6,7)(2,4,8,3)$$-2 \zeta_{4}$
$2$$4$$(1,2,6,8)(3,5,4,7)$$0$
$2$$4$$(1,5,6,7)(2,3,8,4)$$0$
$2$$4$$(1,3,6,4)(2,7,8,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.