Properties

Label 2.2e2_3e2_29.8t11.2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 29 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1044= 2^{2} \cdot 3^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 11 x^{6} - 8 x^{5} + 31 x^{4} + 2 x^{3} + 29 x^{2} + 20 x + 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 277 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 74 + 9\cdot 277 + 18\cdot 277^{2} + 222\cdot 277^{3} + 192\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 76 + 156\cdot 277 + 30\cdot 277^{2} + 84\cdot 277^{3} + 74\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 101 + 254\cdot 277 + 11\cdot 277^{2} + 195\cdot 277^{3} + 86\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 120 + 107\cdot 277 + 151\cdot 277^{2} + 69\cdot 277^{3} + 74\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 227 + 186\cdot 277 + 33\cdot 277^{2} + 42\cdot 277^{3} + 143\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 258 + 35\cdot 277 + 83\cdot 277^{2} + 205\cdot 277^{3} + 41\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 260 + 174\cdot 277 + 172\cdot 277^{2} + 49\cdot 277^{3} + 175\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 271 + 182\cdot 277 + 52\cdot 277^{2} + 240\cdot 277^{3} + 42\cdot 277^{4} +O\left(277^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(4,6)$
$(1,8)(2,4)(3,6)(5,7)$
$(1,2,7,3)(4,5,6,8)$
$(1,7)(2,3)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $-2$ $-2$
$2$ $2$ $(1,8)(2,4)(3,6)(5,7)$ $0$ $0$
$2$ $2$ $(1,7)(4,6)$ $0$ $0$
$2$ $2$ $(1,3)(2,7)(4,8)(5,6)$ $0$ $0$
$1$ $4$ $(1,4,7,6)(2,5,3,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,6,7,4)(2,8,3,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,2,7,3)(4,5,6,8)$ $0$ $0$
$2$ $4$ $(1,8,7,5)(2,6,3,4)$ $0$ $0$
$2$ $4$ $(1,6,7,4)(2,5,3,8)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.