Properties

Label 2.2e2_3e2_17e2.8t17.1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 17^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$10404= 2^{2} \cdot 3^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} - 8 x^{4} + 8 x^{3} + 15 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 7 + 91\cdot 157 + 64\cdot 157^{2} + 155\cdot 157^{3} + 23\cdot 157^{4} + 20\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 + 128\cdot 157 + 78\cdot 157^{2} + 95\cdot 157^{3} + 57\cdot 157^{4} + 89\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 33 + 153\cdot 157 + 109\cdot 157^{2} + 61\cdot 157^{3} + 143\cdot 157^{4} + 80\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 84 + 98\cdot 157 + 154\cdot 157^{2} + 22\cdot 157^{3} + 31\cdot 157^{4} + 77\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 93 + 57\cdot 157 + 28\cdot 157^{2} + 98\cdot 157^{3} + 15\cdot 157^{4} + 122\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 125 + 148\cdot 157 + 51\cdot 157^{2} + 34\cdot 157^{3} + 134\cdot 157^{4} + 70\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 131 + 11\cdot 157 + 88\cdot 157^{2} + 115\cdot 157^{3} + 87\cdot 157^{4} + 33\cdot 157^{5} +O\left(157^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 142 + 95\cdot 157 + 51\cdot 157^{2} + 44\cdot 157^{3} + 134\cdot 157^{4} + 133\cdot 157^{5} +O\left(157^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,8,6,5)$
$(1,4,7,6)(2,8,3,5)$
$(4,6)(5,8)$
$(1,2,7,3)(4,5,6,8)$
$(1,7)(2,3)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $-2$ $-2$
$2$ $2$ $(4,6)(5,8)$ $0$ $0$
$4$ $2$ $(1,8)(2,6)(3,4)(5,7)$ $0$ $0$
$1$ $4$ $(1,3,7,2)(4,5,6,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,2,7,3)(4,8,6,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,2,7,3)(4,5,6,8)$ $0$ $0$
$2$ $4$ $(4,8,6,5)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(4,5,6,8)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,7)(2,3)(4,5,6,8)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,7)(2,3)(4,8,6,5)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$4$ $4$ $(1,4,7,6)(2,8,3,5)$ $0$ $0$
$4$ $8$ $(1,8,3,4,7,5,2,6)$ $0$ $0$
$4$ $8$ $(1,4,2,8,7,6,3,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.