Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 157 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 91\cdot 157 + 64\cdot 157^{2} + 155\cdot 157^{3} + 23\cdot 157^{4} + 20\cdot 157^{5} +O\left(157^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 + 128\cdot 157 + 78\cdot 157^{2} + 95\cdot 157^{3} + 57\cdot 157^{4} + 89\cdot 157^{5} +O\left(157^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 33 + 153\cdot 157 + 109\cdot 157^{2} + 61\cdot 157^{3} + 143\cdot 157^{4} + 80\cdot 157^{5} +O\left(157^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 84 + 98\cdot 157 + 154\cdot 157^{2} + 22\cdot 157^{3} + 31\cdot 157^{4} + 77\cdot 157^{5} +O\left(157^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 93 + 57\cdot 157 + 28\cdot 157^{2} + 98\cdot 157^{3} + 15\cdot 157^{4} + 122\cdot 157^{5} +O\left(157^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 125 + 148\cdot 157 + 51\cdot 157^{2} + 34\cdot 157^{3} + 134\cdot 157^{4} + 70\cdot 157^{5} +O\left(157^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 131 + 11\cdot 157 + 88\cdot 157^{2} + 115\cdot 157^{3} + 87\cdot 157^{4} + 33\cdot 157^{5} +O\left(157^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 142 + 95\cdot 157 + 51\cdot 157^{2} + 44\cdot 157^{3} + 134\cdot 157^{4} + 133\cdot 157^{5} +O\left(157^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(4,8,6,5)$ |
| $(1,4,7,6)(2,8,3,5)$ |
| $(4,6)(5,8)$ |
| $(1,2,7,3)(4,5,6,8)$ |
| $(1,7)(2,3)(4,6)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,7)(2,3)(4,6)(5,8)$ | $-2$ |
| $2$ | $2$ | $(4,6)(5,8)$ | $0$ |
| $4$ | $2$ | $(1,8)(2,6)(3,4)(5,7)$ | $0$ |
| $1$ | $4$ | $(1,3,7,2)(4,5,6,8)$ | $-2 \zeta_{4}$ |
| $1$ | $4$ | $(1,2,7,3)(4,8,6,5)$ | $2 \zeta_{4}$ |
| $2$ | $4$ | $(1,2,7,3)(4,5,6,8)$ | $0$ |
| $2$ | $4$ | $(4,8,6,5)$ | $\zeta_{4} + 1$ |
| $2$ | $4$ | $(4,5,6,8)$ | $-\zeta_{4} + 1$ |
| $2$ | $4$ | $(1,7)(2,3)(4,5,6,8)$ | $-\zeta_{4} - 1$ |
| $2$ | $4$ | $(1,7)(2,3)(4,8,6,5)$ | $\zeta_{4} - 1$ |
| $4$ | $4$ | $(1,4,7,6)(2,8,3,5)$ | $0$ |
| $4$ | $8$ | $(1,8,3,4,7,5,2,6)$ | $0$ |
| $4$ | $8$ | $(1,4,2,8,7,6,3,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.