Properties

Label 2.2e2_3e2_17.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$612= 2^{2} \cdot 3^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + 3 x^{6} + 11 x^{4} + 45 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 8\cdot 89 + 32\cdot 89^{2} + 36\cdot 89^{3} + 10\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 13\cdot 89 + 22\cdot 89^{2} + 46\cdot 89^{3} + 21\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 2\cdot 89 + 80\cdot 89^{2} + 4\cdot 89^{3} + 52\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 + 26\cdot 89 + 71\cdot 89^{2} + 39\cdot 89^{3} + 54\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 48 + 62\cdot 89 + 17\cdot 89^{2} + 49\cdot 89^{3} + 34\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 86\cdot 89 + 8\cdot 89^{2} + 84\cdot 89^{3} + 36\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 64 + 75\cdot 89 + 66\cdot 89^{2} + 42\cdot 89^{3} + 67\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 72 + 80\cdot 89 + 56\cdot 89^{2} + 52\cdot 89^{3} + 78\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3,4,7)(2,8,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,7)(5,8)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,8)(2,3)(4,5)(6,7)$$0$
$2$$4$$(1,3,4,7)(2,8,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.