Properties

Label 2.2e2_3e2_13e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$6084= 2^{2} \cdot 3^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 8 x^{4} + 42 x^{3} - 108 x^{2} + 162 x - 99 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8\cdot 11 + 11^{2} + 3\cdot 11^{4} + 9\cdot 11^{5} + 11^{6} + 7\cdot 11^{7} + 3\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 8 a + \left(2 a + 9\right)\cdot 11 + \left(5 a + 7\right)\cdot 11^{2} + \left(6 a + 1\right)\cdot 11^{3} + \left(10 a + 6\right)\cdot 11^{4} + \left(a + 3\right)\cdot 11^{5} + \left(8 a + 3\right)\cdot 11^{6} + \left(6 a + 1\right)\cdot 11^{7} + 3 a\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 10 + 8 a\cdot 11 + \left(5 a + 4\right)\cdot 11^{2} + 4 a\cdot 11^{3} + 9\cdot 11^{4} + 9 a\cdot 11^{5} + \left(2 a + 1\right)\cdot 11^{6} + \left(4 a + 9\right)\cdot 11^{7} + \left(7 a + 7\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 6 + \left(4 a + 5\right)\cdot 11 + \left(8 a + 3\right)\cdot 11^{2} + 10 a\cdot 11^{3} + \left(2 a + 8\right)\cdot 11^{4} + \left(5 a + 3\right)\cdot 11^{5} + 11^{6} + \left(5 a + 6\right)\cdot 11^{7} + \left(3 a + 8\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 7 + 3\cdot 11 + 5\cdot 11^{2} + 6\cdot 11^{3} + 8\cdot 11^{4} + 4\cdot 11^{5} + 5\cdot 11^{6} + 5\cdot 11^{7} + 6\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 1 + \left(6 a + 6\right)\cdot 11 + \left(2 a + 10\right)\cdot 11^{2} + 11^{3} + \left(8 a + 9\right)\cdot 11^{4} + \left(5 a + 10\right)\cdot 11^{5} + \left(10 a + 8\right)\cdot 11^{6} + \left(5 a + 3\right)\cdot 11^{7} + \left(7 a + 6\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,6)(3,5)$$0$
$2$$3$$(1,4,6)(2,3,5)$$-1$
$2$$6$$(1,3,4,5,6,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.