Properties

Label 2.2e2_3e2_13e2.24t22.3c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 13^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$6084= 2^{2} \cdot 3^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} - 7 x^{5} - 2 x^{4} + 11 x^{3} - 2 x^{2} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 14\cdot 41 + 13\cdot 41^{2} + 30\cdot 41^{3} + 13\cdot 41^{4} + 30\cdot 41^{5} + 32\cdot 41^{6} + 14\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 34 a + 14 + \left(5 a + 40\right)\cdot 41 + \left(24 a + 7\right)\cdot 41^{2} + \left(26 a + 2\right)\cdot 41^{3} + \left(28 a + 13\right)\cdot 41^{4} + \left(26 a + 14\right)\cdot 41^{5} + \left(a + 22\right)\cdot 41^{6} + \left(27 a + 14\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 34 + \left(35 a + 23\right)\cdot 41 + \left(16 a + 33\right)\cdot 41^{2} + \left(14 a + 16\right)\cdot 41^{3} + \left(12 a + 31\right)\cdot 41^{4} + \left(14 a + 24\right)\cdot 41^{5} + 39 a\cdot 41^{6} + \left(13 a + 12\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 28 + 35 a\cdot 41 + \left(16 a + 33\right)\cdot 41^{2} + \left(14 a + 38\right)\cdot 41^{3} + \left(12 a + 27\right)\cdot 41^{4} + \left(14 a + 26\right)\cdot 41^{5} + \left(39 a + 18\right)\cdot 41^{6} + \left(13 a + 26\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 39 a + 24 + \left(26 a + 40\right)\cdot 41 + \left(9 a + 39\right)\cdot 41^{2} + \left(12 a + 6\right)\cdot 41^{3} + \left(25 a + 9\right)\cdot 41^{4} + \left(23 a + 18\right)\cdot 41^{5} + \left(22 a + 39\right)\cdot 41^{6} + \left(36 a + 17\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 17 + 26\cdot 41 + 27\cdot 41^{2} + 10\cdot 41^{3} + 27\cdot 41^{4} + 10\cdot 41^{5} + 8\cdot 41^{6} + 26\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 34 a + 8 + \left(5 a + 17\right)\cdot 41 + \left(24 a + 7\right)\cdot 41^{2} + \left(26 a + 24\right)\cdot 41^{3} + \left(28 a + 9\right)\cdot 41^{4} + \left(26 a + 16\right)\cdot 41^{5} + \left(a + 40\right)\cdot 41^{6} + \left(27 a + 28\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 2 a + 18 + 14 a\cdot 41 + \left(31 a + 1\right)\cdot 41^{2} + \left(28 a + 34\right)\cdot 41^{3} + \left(15 a + 31\right)\cdot 41^{4} + \left(17 a + 22\right)\cdot 41^{5} + \left(18 a + 1\right)\cdot 41^{6} + \left(4 a + 23\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,6,2)(3,5,7,8)$
$(1,8,6,5)(2,3,4,7)$
$(1,6)(2,4)(3,7)(5,8)$
$(2,8,7)(3,4,5)$
$(2,5)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,7)(5,8)$$-2$
$12$$2$$(2,5)(3,7)(4,8)$$0$
$8$$3$$(1,4,7)(2,3,6)$$-1$
$6$$4$$(1,4,6,2)(3,5,7,8)$$0$
$8$$6$$(1,3,4,6,7,2)(5,8)$$1$
$6$$8$$(1,4,3,8,6,2,7,5)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,2,3,5,6,4,7,8)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.