Properties

Label 2.2e2_3e2_13.8t11.2c1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$468= 2^{2} \cdot 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 11 x^{6} - 21 x^{5} + 36 x^{4} - 21 x^{3} + 11 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e2_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 24\cdot 61 + 9\cdot 61^{2} + 60\cdot 61^{3} + 11\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 54\cdot 61 + 47\cdot 61^{2} + 19\cdot 61^{3} + 26\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 45\cdot 61 + 5\cdot 61^{2} + 26\cdot 61^{3} + 8\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 36\cdot 61^{2} + 7\cdot 61^{3} + 14\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 + 60\cdot 61 + 20\cdot 61^{2} + 3\cdot 61^{3} + 42\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 + 47\cdot 61 + 35\cdot 61^{2} + 23\cdot 61^{3} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 52 + 24\cdot 61 + 50\cdot 61^{2} + 53\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 56 + 47\cdot 61 + 37\cdot 61^{2} + 41\cdot 61^{3} + 26\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,7)(5,6)$
$(1,4)(2,5)(3,7)(6,8)$
$(1,5,3,6)(2,7,8,4)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,8)(4,7)(5,6)$$-2$
$2$$2$$(1,4)(2,5)(3,7)(6,8)$$0$
$2$$2$$(4,7)(5,6)$$0$
$2$$2$$(1,5)(2,7)(3,6)(4,8)$$0$
$1$$4$$(1,2,3,8)(4,5,7,6)$$-2 \zeta_{4}$
$1$$4$$(1,8,3,2)(4,6,7,5)$$2 \zeta_{4}$
$2$$4$$(1,5,3,6)(2,7,8,4)$$0$
$2$$4$$(1,8,3,2)(4,5,7,6)$$0$
$2$$4$$(1,4,3,7)(2,5,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.