Properties

Label 2.2e2_3e2_11e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{2} \cdot 3^{2} \cdot 11^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4356= 2^{2} \cdot 3^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} + 26 x^{5} - 74 x^{4} + 56 x^{3} + 184 x^{2} - 64 x - 128 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 50\cdot 97 + 40\cdot 97^{2} + 7\cdot 97^{3} + 37\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 33\cdot 97 + 9\cdot 97^{2} + 39\cdot 97^{3} + 56\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 50\cdot 97 + 29\cdot 97^{2} + 76\cdot 97^{3} + 13\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 + 53\cdot 97 + 40\cdot 97^{2} + 2\cdot 97^{3} + 90\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 + 57\cdot 97 + 17\cdot 97^{2} + 76\cdot 97^{3} + 33\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 46 + 90\cdot 97 + 68\cdot 97^{2} + 27\cdot 97^{3} + 32\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 62 + 47\cdot 97 + 96\cdot 97^{2} + 30\cdot 97^{3} + 22\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 78 + 5\cdot 97 + 85\cdot 97^{2} + 30\cdot 97^{3} + 5\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,6,8)(2,4,5,3)$
$(1,8)(2,5)(6,7)$
$(1,5,6,2)(3,7,4,8)$
$(1,6)(2,5)(3,4)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $-2$ $-2$
$4$ $2$ $(1,8)(2,5)(6,7)$ $0$ $0$
$2$ $4$ $(1,7,6,8)(2,4,5,3)$ $0$ $0$
$4$ $4$ $(1,5,6,2)(3,7,4,8)$ $0$ $0$
$2$ $8$ $(1,2,8,3,6,5,7,4)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,5,8,4,6,2,7,3)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.