Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 2\cdot 17 + 13\cdot 17^{2} + 17^{3} + 9\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 10\cdot 17 + 15\cdot 17^{2} + 7\cdot 17^{3} + 6\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 6 + 4\cdot 17 + 6\cdot 17^{2} + 7\cdot 17^{3} + 4\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 8 + 12\cdot 17 + 8\cdot 17^{2} + 13\cdot 17^{3} + 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 10 + 4\cdot 17 + 8\cdot 17^{2} + 3\cdot 17^{3} + 15\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 12 + 12\cdot 17 + 10\cdot 17^{2} + 9\cdot 17^{3} + 12\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 14 + 6\cdot 17 + 17^{2} + 9\cdot 17^{3} + 10\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 16 + 14\cdot 17 + 3\cdot 17^{2} + 15\cdot 17^{3} + 7\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,6,5)(3,4,8,7)$ |
| $(1,3)(2,7)(4,5)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,6)(2,5)(3,8)(4,7)$ | $-2$ |
| $2$ | $2$ | $(1,3)(2,7)(4,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $0$ |
| $2$ | $4$ | $(1,2,6,5)(3,4,8,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.