Properties

Label 2.2e2_3e2_11e2.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4356= 2^{2} \cdot 3^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 25 x^{4} - 38 x^{3} + 2 x^{2} + 16 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 2\cdot 17 + 13\cdot 17^{2} + 17^{3} + 9\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 10\cdot 17 + 15\cdot 17^{2} + 7\cdot 17^{3} + 6\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 4\cdot 17 + 6\cdot 17^{2} + 7\cdot 17^{3} + 4\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 + 12\cdot 17 + 8\cdot 17^{2} + 13\cdot 17^{3} + 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 4\cdot 17 + 8\cdot 17^{2} + 3\cdot 17^{3} + 15\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 + 12\cdot 17 + 10\cdot 17^{2} + 9\cdot 17^{3} + 12\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 14 + 6\cdot 17 + 17^{2} + 9\cdot 17^{3} + 10\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 16 + 14\cdot 17 + 3\cdot 17^{2} + 15\cdot 17^{3} + 7\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,5)(3,4,8,7)$
$(1,3)(2,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$4$$(1,2,6,5)(3,4,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.