Properties

Label 2.2e2_3e2_11.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$396= 2^{2} \cdot 3^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} + x^{6} + 4 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 69\cdot 97 + 92\cdot 97^{2} + 28\cdot 97^{3} + 16\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 56\cdot 97 + 43\cdot 97^{2} + 65\cdot 97^{3} + 8\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 84\cdot 97 + 89\cdot 97^{2} + 69\cdot 97^{3} + 28\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 49\cdot 97 + 7\cdot 97^{2} + 75\cdot 97^{3} + 62\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 54 + 47\cdot 97 + 89\cdot 97^{2} + 21\cdot 97^{3} + 34\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 69 + 12\cdot 97 + 7\cdot 97^{2} + 27\cdot 97^{3} + 68\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 79 + 40\cdot 97 + 53\cdot 97^{2} + 31\cdot 97^{3} + 88\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 90 + 27\cdot 97 + 4\cdot 97^{2} + 68\cdot 97^{3} + 80\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,3,7)(2,8,5,6)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,8)(2,4)(3,6)(5,7)$ $0$
$2$ $4$ $(1,4,3,7)(2,8,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.