Properties

Label 2.2e2_3e2_11.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{2} \cdot 3^{2} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$396= 2^{2} \cdot 3^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 11 x^{6} + 24 x^{4} - 11 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 59\cdot 83 + 28\cdot 83^{2} + 3\cdot 83^{3} + 25\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 42\cdot 83 + 59\cdot 83^{2} + 68\cdot 83^{3} + 73\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 77\cdot 83 + 49\cdot 83^{2} + 26\cdot 83^{3} + 17\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 + 54\cdot 83 + 41\cdot 83^{2} + 4\cdot 83^{3} + 67\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 28\cdot 83 + 41\cdot 83^{2} + 78\cdot 83^{3} + 15\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 59 + 5\cdot 83 + 33\cdot 83^{2} + 56\cdot 83^{3} + 65\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 69 + 40\cdot 83 + 23\cdot 83^{2} + 14\cdot 83^{3} + 9\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 77 + 23\cdot 83 + 54\cdot 83^{2} + 79\cdot 83^{3} + 57\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,7,4)(2,5,8,6)$
$(1,2)(3,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $4$ $(1,3,7,4)(2,5,8,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.